Heterotrophic Bacteria

m-HPC Broth Ampules
Heterotrophic Plate Count (HPC)

Method 8242
Membrane Filtration

Scope and application: For low-turbidity water and wastewater.

⚠️ Test preparation

Before starting

Set the temperature of the incubator to 35 ± 0.5 °C (95 ± 0.9 °F). Let the incubator temperature become stable, then add the samples.

Wash hands thoroughly with soap and water.

Use a germicidal cloth, bactericidal spray, weak bleach solution or weak iodine solution to clean the work area.

Make sure that all of the materials that come in contact with samples are sterile.

During filtration, remove the vacuum as soon as the funnel is empty so that the membrane filter does not become dry.

As an alternative to the broth ampule, use a pre-poured agar plate.

As an alternative to the filter assembly with flask, use a sterile, disposable filter unit.

Items to collect

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broth ampule, m-HPC</td>
<td>1</td>
</tr>
<tr>
<td>Sterile buffered dilution water</td>
<td>1</td>
</tr>
<tr>
<td>Membrane filter, 0.45 micron</td>
<td>1</td>
</tr>
<tr>
<td>Petri dish with absorbent pad, 47-mm</td>
<td>1</td>
</tr>
<tr>
<td>Filtration apparatus with aspirator or pump</td>
<td>1</td>
</tr>
<tr>
<td>Forceps, sterilized</td>
<td>1</td>
</tr>
<tr>
<td>Incubator</td>
<td>1</td>
</tr>
<tr>
<td>Microscope, low-power</td>
<td>1</td>
</tr>
<tr>
<td>Pipet(s) for dilution or for sample volumes less than 100 mL, if necessary</td>
<td>1</td>
</tr>
</tbody>
</table>

Refer to Consumables and replacement items on page 5 for order information.
Sample collection

- Use a sterile glass or plastic container such as a Whirl-Pak bag that contains sterilized sodium thiosulfate. The sodium thiosulfate is not necessary if the sample does not contain a residual disinfectant.
- Open the sample containers immediately before collection and close immediately after collection. Do not put the lid or cap down. Do not touch the lip or inner surfaces of the container. Do not rinse the containers before use.
- To collect a potable water sample from a faucet, spigot, hydrant or pump, let the water flow at a moderate rate for 2–3 minutes. Remove the screens or aerators. Do not use faucets or spigots that have a bad seal or that show a leak between components.
- To collect a non-potable sample from a river, lake or reservoir, hold the container below the water surface, then remove the cap. As an alternative, remove the cap and push the container, mouth down, below the water surface to prevent the collection of surface scum. Put the mouth of the container into the current. Fully fill the container below the water surface.
- Collect a minimum of 100 mL of sample. Keep a minimum of 2.5 cm (1 inch) of air space in the container.
- Write the sample information on the container and start the analysis as soon as possible.
- If immediate analysis is not possible, keep the sample at or below 10 °C (50 °F) for a maximum of 8 hours. Do not let the sample freeze.

Sample volumes

Use a sample volume that is applicable to the sample type. For samples with a low level of bacteria such as finished, potable water, use 100 mL of sample. Use less sample for non-potable water or water that contains more bacteria.

When the approximate bacteria level is unknown, analyze three different sample volumes. Use the results from the sample volume that shows approximately 20 to 200 colonies for each membrane filter.

When the sample volume is less than 20 mL (diluted or undiluted), add 10 mL of sterile buffered dilution water to the filter funnel before the vacuum is applied. The additional dilution water helps to apply the bacteria equally across the membrane filter.

Sample dilution

Dilute samples that contain a high level of bacteria so that approximately 20 to 200 bacteria colonies grow on the membrane filter. Use the steps that follow to make serial dilutions of the sample.

1. Wash hands thoroughly with soap and water.
2. Invert the sample container for 30 seconds (approximately 25 times).
3. Open a bottle of sterile buffered dilution water.
4. Use a sterile pipet to add 11 mL of sample into the dilution water bottle.
5. Put the cap on the dilution water bottle and invert for 30 seconds (25 times). This is a 10x dilution (sample is diluted by a factor of 10).
6. Add 11 mL of the 10-fold dilution to another dilution bottle (100x dilution). Mix well.
7. Add 11 mL of the 100-fold dilution to the third bottle (1000x dilution). Mix well.
8. If necessary, continue to dilute the sample.
Membrane filtration test procedure

1. Open one m-HPC broth ampule. Lift the lid of a petri dish and carefully pour the contents equally on the absorbent pad.

2. Set up the membrane filtration apparatus. Use a sterile forceps to put a membrane filter in the assembly. Make sure that the grid side is up.

3. Invert the sample or the diluted sample for 30 seconds (25 times) to make sure that the sample is mixed well.

4. Pour or use a pipet to add the sample into the funnel. If the volume is less than 20 mL, add 10 mL of sterile buffered dilution water to the funnel.

5. Apply the vacuum until the funnel is empty. Stop the vacuum.

6. Rinse the funnel with 20 to 30 mL of sterile buffered dilution water. Apply the vacuum. Rinse the funnel two more times.

7. Stop the vacuum when the funnel is empty. Remove the funnel from the filter assembly. Use sterile forceps to lift the membrane filter.

8. Put the membrane filter on the absorbent pad. Let the membrane filter bend and fall equally across the absorbent pad to make sure that air bubbles are not caught below the filter.

9. Put the lid on the petri dish and invert the petri dish.

10. Put the inverted petri dish in a plastic bag and seal the bag.

11. Incubate the inverted petri dish at 35 (± 0.5) °C (95 (± 0.9) °F) for 48 hours.

12. Remove the petri dish from the incubator. Use a 10 to 15x microscope to count the number of bacteria colonies on the membrane filter that have a clear to cream color. Refer to Interpret and report the HPC results on page 4.
Interpret and report the HPC results

Use the steps that follow to determine the colony-forming units for each mL of sample (CFU/mL). A colony density of 20 to 200 colonies on the membrane filter is recommended for best results. If there are more than 200 colonies, dilute the sample and use the diluted sample in the test procedure. Use the sample volume before dilution in the CFU/mL determination.

1. Use the microscope to look at the colonies on the membrane filter. Estimate the number of colonies in each square of the membrane filter.

 Note: Make estimated counts only when there are isolated colonies without spreaders.

2. Determine the CFU/mL of sample for the estimated colony count as follows:

<table>
<thead>
<tr>
<th>Estimated count</th>
<th>CFU/mL determination</th>
</tr>
</thead>
</table>
 | 1 to 2 colonies in each square | 1. Count all of the colonies on the filter.
 2. Divide the total number of colonies by the sample volume.
 Example: 122 total colonies were counted. The sample volume was 100 mL. 122 colonies/100 mL = 1.2 CFU/mL |
 | 3 to 10 colonies in each square | 1. Count the colonies in 10 representative squares.
 2. Divide by 10 to get the average number of colonies in each square.
 3. Multiply the average number in each square by 100.
 4. Divide by the sample volume.
 Example: The average number of colonies was 8 colonies in each square. The sample volume was 10 mL. 8 colonies x 100/10 mL = 80 CFU/mL |
 | 10 to 20 colonies in each square | 1. Count the colonies in 5 representative squares
 2. Divide by 5 to get the average number of colonies in each square.
 3. Multiply the average number in each square by 100.
 4. Divide by the sample volume.
 Example: The average number of colonies was 17 colonies in each square. The sample volume was 10 mL. 17 colonies x 100/10 mL = 170 CFU/mL |
 | More than 20 colonies in each square | 1. Divide 2000 by the volume of the original (undiluted) sample.
 2. Report results as more than the result of step 1.
 Example: The original sample volume was 0.1 mL. 2000/0.1 mL = > 20,000 CFU/mL |

3. Report the test results as colony forming units for each mL (CFU/mL). Report averaged counts as estimated CFU/mL. Include in the report the method used, the incubation temperature, time and the nutritional medium. *Example: 98 CFU/mL, membrane filter method, 35 °C, 24 hours, m-TGE Broth.*

Summary of method

The HPC (heterotrophic plate count) method is used to make an estimate of the number of aerobic and facultatively anaerobic heterotrophic bacteria in water. The concentration of heterotrophic bacteria in water gives information about the quality of the water and how much bacteria is removed during treatment. Different nutritional broths and agars are available to supply the necessary nutrients to bacteria in different types of water.

The membrane filtration procedure is used for samples that are low in turbidity and have low bacteria counts. The sample is poured through a membrane filter. The bacteria in the sample stays on the membrane filter. The membrane filter is moved to a petri dish that contains a nutritional broth or agar. During incubation, the bacteria grow and form colonies on the membrane filter. After incubation, the filter is examined with a microscope for bacteria colonies.
Consumables and replacement items

Required reagents

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity/test</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-HPC broth ampules, plastic, 2 mL</td>
<td>1</td>
<td>50/pkg</td>
<td>2812450</td>
</tr>
<tr>
<td>Dilution water, buffered, 99 mL, sterile</td>
<td>1</td>
<td>25/pkg</td>
<td>1430598</td>
</tr>
</tbody>
</table>

Required apparatus

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane filter holder, magnetic, 300-mL funnel</td>
<td>each</td>
<td>1352900</td>
</tr>
<tr>
<td>Filter pump, aspirator</td>
<td>each</td>
<td>213100</td>
</tr>
<tr>
<td>Flask, filtering, glass, 1000 mL</td>
<td>each</td>
<td>54653</td>
</tr>
<tr>
<td>Forceps, stainless steel</td>
<td>each</td>
<td>2141100</td>
</tr>
<tr>
<td>Membrane filter, 0.45 micron, 47 mm diameter, sterile</td>
<td>200/pkg</td>
<td>1353001</td>
</tr>
<tr>
<td>Membrane filter, 0.45 micron, 47 mm diameter, sterile EO (ethylene oxide)</td>
<td>150/pkg</td>
<td>2936100</td>
</tr>
<tr>
<td>Microscope, compound</td>
<td>each</td>
<td>2947050</td>
</tr>
<tr>
<td>Petri dish with absorbent pad, for 47-mm membrane filters, sterile</td>
<td>100/pkg</td>
<td>1471799</td>
</tr>
<tr>
<td>Petri dish with absorbent pad, for 47-mm membrane filters, sterile EO (ethylene oxide)</td>
<td>150/pkg</td>
<td>25248000</td>
</tr>
<tr>
<td>Stopper, rubber, size 8, for filtration assembly</td>
<td>6/pkg</td>
<td>211908</td>
</tr>
<tr>
<td>Pipet, TenSette® , 1.0–10.0 mL</td>
<td>each</td>
<td>1970010</td>
</tr>
<tr>
<td>Pipet tips, TenSette, 1.0–10.0 mL, sterile, individually wrapped</td>
<td>50/pkg</td>
<td>2558996</td>
</tr>
<tr>
<td>Tubing, rubber, 7.9 mm (5/16-in.) inside diameter</td>
<td>3.66 m (12 ft)</td>
<td>56019</td>
</tr>
</tbody>
</table>

Incubators

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory incubator, culture, 110 VAC</td>
<td>each</td>
<td>2619200</td>
</tr>
<tr>
<td>Laboratory incubator, culture, 230 VAC</td>
<td>each</td>
<td>2619202</td>
</tr>
<tr>
<td>Portable incubator with 12 VDC power socket</td>
<td>each</td>
<td>2569900</td>
</tr>
<tr>
<td>AC power supply for portable incubator, 110–240 VAC</td>
<td>each</td>
<td>2968100</td>
</tr>
<tr>
<td>Battery pack, rechargeable, for portable incubator 12 VDC</td>
<td>each</td>
<td>2580300</td>
</tr>
<tr>
<td>Portable incubator rack, general purpose/petri dish</td>
<td>each</td>
<td>2580502</td>
</tr>
</tbody>
</table>

Sample collection

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling bags, Whirl-Pak® with dechlorinating reagent, 177 mL</td>
<td>100/pkg</td>
<td>2075333</td>
</tr>
<tr>
<td>Sampling bags, Whirl-Pak without dechlorinating reagent, 207 mL</td>
<td>100/pkg</td>
<td>2233199</td>
</tr>
<tr>
<td>Sampling bottles, sterilized, with dechlorinating agent, 100-mL sample</td>
<td>100/pkg</td>
<td>8888006</td>
</tr>
<tr>
<td>Sampling bottles, sterilized, without dechlorinating reagent, 100-mL sample</td>
<td>12/pkg</td>
<td>2495012</td>
</tr>
</tbody>
</table>

1 Buffered dilution water is prepared with magnesium chloride and potassium dihydrogen phosphate.
Sample collection (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling bottles, sterilized, without dechlorinating reagent, 100-mL sample</td>
<td>50/pkg</td>
<td>2495050</td>
</tr>
<tr>
<td>Sample transport kit, includes 100 sample bags with dechlorinating agent, refrigerant pack, rack and 9-L cooler</td>
<td>each</td>
<td>2568700</td>
</tr>
</tbody>
</table>

Optional reagents and apparatus

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Item no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-HPC agar plates</td>
<td>15/pkg</td>
<td>2811415</td>
</tr>
<tr>
<td>Disposable filter funnels with membrane filters, sterile</td>
<td>150/pkg</td>
<td>2586300</td>
</tr>
<tr>
<td>Pipet, serological, 10–11 mL, sterile, disposable</td>
<td>25/pkg</td>
<td>209798</td>
</tr>
<tr>
<td>Pipet, serological, 2 mL, sterile, glass</td>
<td>35/pkg</td>
<td>2093136</td>
</tr>
<tr>
<td>Pipet filler, safety bulb</td>
<td>each</td>
<td>1465100</td>
</tr>
<tr>
<td>Support base for disposable filter funnels</td>
<td>each</td>
<td>2586201</td>
</tr>
<tr>
<td>Vacuum pump, hand-operated</td>
<td>each</td>
<td>1428300</td>
</tr>
</tbody>
</table>